ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE GIUGNO 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 26.06.2008

TEMA N. L

Si ipotizzi che, al termine di un periodo di esercizio, la sovrastruttura di una strada di tipo C1 (DM 5/11/2001), composta da uno strato di 10 cm in conglomerato bituminoso e da una base in misto granulare di spessore 20cm, denoti un decadimento della portanza. Sulla base delle misure di deflessione (ricavate con la trave Benkelman) e dei relativi dati di prova riportati in tab.1 e considerando un traffico giornaliero medio rappresentato dai dati di tab.2, si determini:

1) la vita utile residua della pavimentazione;

2) lo spessore degli strati oggetto dell'intervento manutentivo necessario al fine di garantire un prolungamento di 10 anni della vita utile.

(Si consideri un tasso medio annuo di crescita del traffico pari al 5%).

Si rediga il capitolato tecnico speciale di appalto per l'intervento da eseguire.

TABELLA 1

Х	mm
1	1.2347
2	1.3596
3	1.1405
4	1.1833
5	1.3177

Temp. superficiale pavimentazione = 35°C
Temp. media aria nei 5 gg. precedenti le prove = 25°C
Prove eseguite in condizioni di clima mite dopo un
periodo piovoso

TABELLA 2

n. assi	Carico (ton)
10	0.9
170	1.8
246	2.7
214	4.5
282	5.5
158	6.4
54	7.3
38	8.2
42	9.1
32	10
34	10.9
28	11.8

Passaggi totali relativi ad asse singolo

Mon sun M Ramba yajanth

Alyn

Ao

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGN SESSIONE GIUGNO 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 26.06.2008

TEMA N. 2

Una strada urbana di scorrimento a carreggiate separate con 3 corsie | marcia (tipo D - D.M. 5.11.2001 "Norme funzionali geometriche per la delle strade") interseca una strada urbana di quartiere (tipo E - D.M formando un angolo di 80° (fig.1).

Progettare uno svincolo del tipo a quadrifoglio parziale a due quadranti seguenti ipotesi:

- la strada tipo D (2-2) corre in rilevato a m. 1,75 dal piano campagna;
- la strada tipo E (1-1) corre in trincea a m. 0.50 dal piano campagna;
- la zona interessata dall'intersezione è pianeggiante.

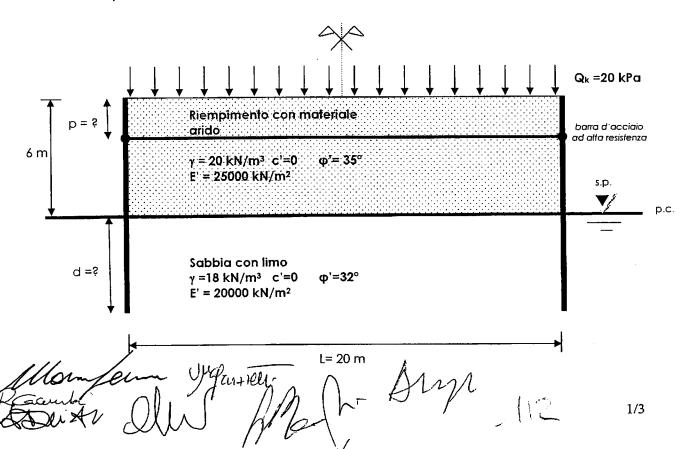
Il candidato dovrà eseguire:

- planimetria dell'intersezione e zona di occupazione (scala 1:1000);
- profilo longitudinale delle rampe (scala 1:1000/1:100);
- studio particolareggiato dei nodi A e B (fig.1);
- studio di massima del manufatto di scavalco.

1 A B Morn James B Pesands Mac 2 fig. 1 Que yayantah:

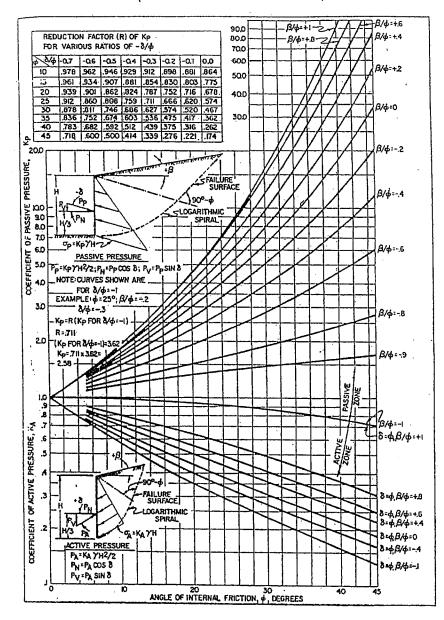
ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE GIUGNO 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 26.06.2008

TEMA N. 3


Si progettino le opere di sostegno a contenimento di una rampa di accesso ad un piazzale da adibirsi a parcheggio di scambio nel comune di Ancona. Vista la destinazione d'uso delle aree limitrofe e la necessità pertanto di minimizzare l'ingombro complessivo dell'opera, si preveda l'uso di palancole metalliche vincolate mutuamente tramite barre di ancoraggio di tipo passivo.

Nella sezione di massima altezza della rampa la configurazione geometrica del problema (simmetrico) è quella riportata in figura ed il sovraccarico, di carattere variabile, può essere assunto pari a $Q_k=20~kN/m^2$ e considerato uniformemente distribuito.

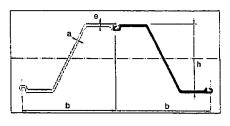
Il terreno naturale in posto, che presenta la superficie freatica a livello di piano campagna, è costituito da una sabbia con limo dalle seguenti caratteristiche: peso dell'unità di volume $\gamma=18$ kN/m³, angolo di attrito φ 1 =32°, coesione efficace c'= 0 kN/m², modulo elastico E' =20000 kN/m².


Al materiale granulare di riporto possono, invece, essere attribuite le seguenti caratteristiche: peso dell'unità di volume γ =20 kN/m³, angolo di attrito φ ¹ =35°, coesione efficace c′ = 0 kN/m², modulo elastico E′ =25000 kN/m².

Si individuino, in particolare, la posizione delle barre di ancoraggio rispetto al piano viario (p), la profondità di infissione delle palancole (d), le principali problematiche geotecniche di carattere esecutivo, le fasi costruttive dell'opera.

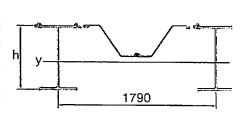
ALLEGATO

(l'utilizzo non è vincolante)


BARRE PER ANCORAGGIO DI COMUNE UTILIZZO

n	ominal diameter	steel grade	load at yield	ultimate load	
	mm	N/mm ²	kN	kN	
	26.5	950/1050WR	525	580	
	32	950/1050WR	760	850	
	36	950/1050WR	960	1,070	
	40	950/1050WR	1,190	1,320	
	47	950/1050WR	1,648	1,822	
	30	670/800	474	565	
	35	670/800	645	770	
	43	670/800	973	1,162	1:0
	57.5	670/800	1,740	2,077	/U.S.
	63.5	670/800	2.122	2.534 /	
Monte	in A	2eiAc i	D inch	untal?	$\int_{0}^{2/3}$
XC auch	Qu	12	970	ciraci.	

PROFILI METALLICI DI COMUNE UTILIZZO PER PALANCOLE


PROFILO AZ

Section	Width	Height	Thick	mess	Sectional area	Ма	98	Moment of inertia	Elastic section modulus
	b mm	h mm	mm t	s mm	A cm²/m	kg/m of single pile	kg/m² of wall	cm4/m	w cm³/m
AZ 12	670	302	. 8.5	2 8.5	ii 126 n	66.1	99	18140	1200
AZ 13	670	303	9.5	9.5	137	72.0	107	19700	1300
AZ 14	670	304	10.5	10,5	149 🕆	78.3.47	117,	21300	1400
AZ 17	. (630)	. 979	85.	8.5	138 7	68.4	. 109 ,	31580	1665
AZ 18	6301	. 380 ii	9.5	9.5	150 ×	74.4	118	34200	1800
AZ 10	630	381	105	10.5	164	81:0	î 2 9	96980	1940
AZ 25	630,	. 426	12.0	11 .2	ំ«185 🕍	91.5	145	52250	2455
AZ 265)	≟ ′′ 630	427	13.0	12.2	198	97.8	155	55510	2600
AZ 28	630	428	14.0	19,2	211	104.4	166	58940	2755
AZ 34)	630	45D	17.0	13.0	234	#115.5 P	183	78700	3430
AZ 36	630	460	18.0	14.0	247	1,122.2	194	62600	3600
AZ 98	630	461	19.0	15.0	261	129.1	205	87060	3780
AZ 46	580	481	18.0	: 140	201 🐙	132.6	229	110450	4595
AZ 48	580	482	10.0	15.D	307	139.6	241	115670	4800
AZ 50	% 580°	463	20.0	16.0	322	146.7	253	121060	5015

PROFILO COMBINATO HZ....-12/AZ18

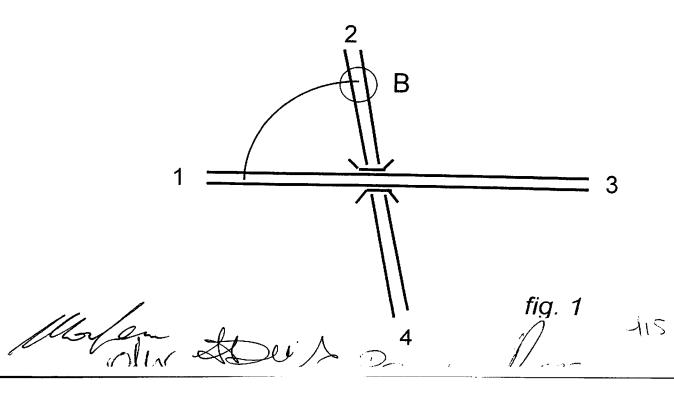
Profil	Dimension	Properties	per meter of wall	· W	Mass*	** Coa	iling area
Section	h mm	Sectional area A cm²/m	Moment of Inertia J cm ⁴ /m	Elastic** section modulus cm³/m	/ AZ = 60% / HZ kg/m²	/ AZ = / HZ kg/m²	Water- side m²/m
HZ 575 A	575.0	240.9	110100 *	3275	149	189	2.332
HZ 575 B	579.0°	251.2	11 9 050	3555	157,415	197	2.332 4
HZ 5 75 C	583.0	264.9	129350	3880	167	208	2.332
HZ 575 D	587.0	277.8	139820	4155	177	218	2.348
HZ 775 A	775.0	273.0	210000	4765	174	214	2.33 2
HZ 775 B	7 7 9.0	283.3	225980	5140	182	222	2.3321
HZ 775 C	783.0	303.0	248530	5630	197	- 238	2.346
HZ 775 D	787.0	3133	264810	6005	205	246	2.346
HZ 975 A	975.0	294.8	a. 337840√ ⁸	6180	v 191	231	2.332
HŽ 975 B	979.0	305,1	363060	6655	199	240	2.332
HZ 975 C	983.0	3223	402610	7360	217	258	2.347
HZ 975 D	987.0	339.6	428250	7835	225	267	2.347
HZ 1050,	ية 1050.0°C	350.9	492660	.850 5	234	275	2,347

Acciaio per palancole: Grade \$355 GP Tensione di rottura f_{tk} : 480 N/mm² Tensione di snervamento: f_{yk} 355 N/mm² Modulo elastico: E = 210 000 N/mm²

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE NOVEMBRE 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2008

TEMA N. 1

Due strade extraurbane secondarie, di tipo **C1** e **C2** rispettivamente (D.M. 5.11.2001), si intersecano formando un angolo di 70° (fig. 1). Progettare uno svincolo del tipo a quadrifoglio parziale monoquadrante nelle seguenti ipotesi:


- la strada C2 (1-3) corre in rilevato a m. 2.50 sul piano campagna;
- la strada C1 (2-4) corre in rilevato a m. 0.60 dal piano campagna;
- la zona interessata dall'intersezione è pianeggiante.
- matrice origine/destinazione:

<u>о</u> Р	1	2	3	4
1	ı	50	300	100
2	150	-	150	600
3	300	50	-	100
4	150	500	100	-

(veicoli/ora)

Il candidato dovrà eseguire:

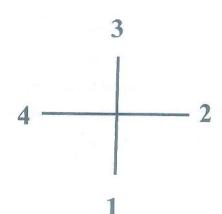
- planimetria dell'intersezione e zona di occupazione (scala 1:1000);
- profilo longitudinale della rampa (scala 1:1000/1:100);
- studio particolareggiato del nodo B (fig.1);
- studio di massima del manufatto di scavalco;

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE NOVEMBRE 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2008

TEMAN. 2

Due strade urbane di quartiere con 2 corsie per senso di marcia (tipo E - D.M. 5.11.2001 "Norme funzionali e geometriche per la costruzione delle strade") si intersecano formando un angolo di 90°.

Progettare una intersezione a raso del tipo rotatoria impropria nelle seguenti ipotesi:


- la zona interessata dall'intersezione è pianeggiante;
- il volume di traffico di progetto è rappresentato dalla matrice origine/destinazione riportata nella Tabella 1.

Il candidato dovrà redigere i seguenti elaborati:

- planimetria dell'intersezione e zona di occupazione (scala 1:1000);
- relazione tecnica (con verifica del livello di servizio di esercizio dell'intersezione).

Tabella 1: (veicoli/ora)

O/D	1	2	3	4
1	3	280	530	170
2	120	5	390	480
3	480	180	4	330
4	380	530	70	6

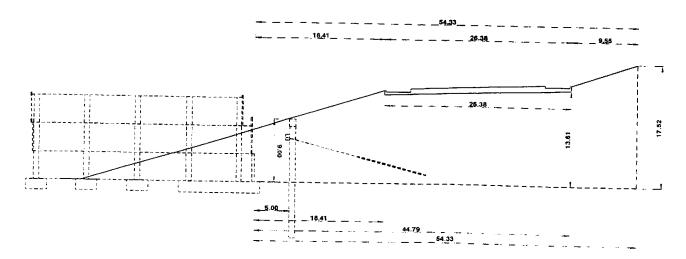
Monten de Deix Deix

Dor

116

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE NOVEMBRE 2008 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2008

TEMA N. 3


Si progetti l'opera di sostegno flessibile in cemento armato, ancorata con tiranti a bulbo iniettati, atta contenere uno scavo verticale di altezza 9 m previsto per la costruzione di un nuovo edificio del polo didattico di Montedago dell'Università di Ancona.

A monte dell'opera di sostegno, prevista circa a metà della collina di Montedago, verrà realizzata un'opera stradale per la quale si può stimare un carico variabile di 20kPa, sia in corrispondenza delle sezioni che intersecano l'area parcheggi, sia in corrispondenza delle sezioni che intersecano la strada di accesso ai parcheggi stessi.

La sequenza stratigrafica, dedotta dalle indagini, individua la presenza di due litotipi a grana fine entrambi consistenti e con la stessa origine geologica:

- le Argille Limose Marroni (formazione pliocenica alterata)
- le Argille Limose Grigio-Azzurre (formazione pliocenica intatta)

Le indagini geologiche e geotecniche condotte hanno previsto l'esecuzione di due sondaggi di lunghezza 15 m, il prelievo di campioni indisturbati, l'esecuzione di prove di laboratorio e l'istallazione di piezometri elettrici per il rilievo della superficie freatica. I risultati delle indagini sono sintetizzati nelle seguenti tabelle e figure.

Sezione tipo (lunghezze espresse in metri)

Oll Marjan Staith Roman

117

Sondaggio	Campione	Profondità	w	Ι ν	Sr	1 101	7-	T =-			·	
		(m)	(%)	(kN/m³)	(%)	WL	Ip	Ic	C	M	S	Attivit
			1 7.07	(NI/III)	(70)	(%)	(%)		(%)	(%)	(%)	
Α	2	3.30	26.16	19.9	95.6	F7.2	1 22 1	-	ļ			i
				13.5	33.0	57.3	32.1	0.94	50	47	3	0.64
A	3	4.30	27.80	20.1	97.5	EC 45	1 20 20					
				20.1	37.3	56.45	30.28	1.04	48	49	3	0.63
A	4	5.30	26.40	20.2	97.0	E2 E	1 20 2	-				
			201.10	20.2	37.0	52.5	28.3	0.93	47	49	4	0.6
A	5	7.25	24.5	19.8	97.0	EE 7						
			- 115	13.0	37.0	55.7	32.4	0.96	47.9	47.8	4.3	0.67
Α	6	8.24	23.40	21.0	97.0	F7.0	34.0					
				21.0	37.0	57.8	31.8	1.08	50	48	2	0.64
Α	7	9.60	25.30	20.46	97.8	61.1	22.5				1	
				20.10	37.0	61.1	33.6	1.1	48	50	_2	0.7
A	8	12.60	25.90	20.2	100	61.5	74.77					
					100	01.5	34.23	1.08				
B	2	3.40	30.19	19.56	100	60.1	20.6	- 1				
					100	00.1	29.6	0.03	5 5	44	1	0.54
В	3	4.25	31.00	19.50	100	67.9	41.1	0.04				
					100	07.9	41.1	0.04	50	49	1	0.82
В	4	5.30	31.60	19.90	100	62.2	22.4	0.05				
					-100	02.2	33.4	0.05	46	51	3	0.72
В	5	6.70	29.60	19.50	98	58.45	22.04					
						JU.73	32.94	0.12	44	53	3	0.75

Tabella 1

	Range di σ' (kPa) 0<σ'<100			i σ' (kPa) s'<400		i σ' (kPa) >400
TD – picco nat.	c'	φ'	c'	φ'	c'	φ'
	(kPa)	(°)	(kPa)	(°)	(kPa)	(°)
	0	31	38	26	130	16

Tabella 2 – Interpretazione dei risultati delle prove di taglio diretto al variare del range tensionale indagato

Trefoli	nominale	Sezione	Carico	Carico	di esercizi	a in relazi	one a F.	Carico di Snervamento	Canco d	useraz ione a F
rL_	mm	 -	F _{p=0} F _{ps}	0,7 F _µ	0. 6 25 F _p	0.6 F	0.5 Fc	F ₃ =n F _{20 1}		
2		LIMIT.	kN	kN	kN	kuN	KN	icNi	0.75 F.	0,6 F
3	15,2	280	520	364	325	312	260		kN	kN
-	15.2	420	780	546	488	468	390	450	345	276
4	15.2	560	1040	728	650	624	520	690	Sig	414
5	:5.2	700	1300	910	813	780		920	690	552
6	15,2	840	1560	1092	975	936	650	1150	863	59D
7	15,2	980	1820	1274	1138	1092	780	1380	1035	828
8	15,2	1120	2080	1458	7300		910	1610	1208	966
9	15.2	1260	2340	1638	1463	1248	1040	1840	1380	1104
10	15,2	1400	2600	1820	1625	1404	1170	2070	1553	1242
2	15,7	300	558	301	349	1550	1300	2300	1725	1380
3	15.7	450	837	586		335	279	498	372	298
4 1	15,7	600	1116	781	523	502	419	744	558	446
5	15.7	750	1395	977	698	670	55 8 '	992	744	595
5	15.7	900	1674	1172	872	837	598	1240	930	744
7	15,7	1050	1953	1367	1046	1004	837	1488	1116	693
8	15,7	1200	2232	1562	1221	1172	977	1736	1302	1042
9	15.7	1350	2511	1758	1395	1339	1116	1984	1488	190
10	15.7	1500	2790		1569	1507	1256	2232	1674	1339
ichi di est	rozo ndeali		000 45 45	1953	1744	1674	1395	2480	186D	1/100
OU THEFT	oni TA '95, ak Pontal a not		un dá dóir	PEN III PENEZIO	ne ate nome	Tive di riera	mento (racco	2480 Mandazieni AICAP.	CERNO DE	:488

Tabella 3 – Caratteristiche principali dei trefoli idonei al sistema di ancoraggio da progettare

2 115

Mule

DI: X1

dill

ESAME DI STATO DI ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE PER LAUREATI IN INGEGNERIA (VO)

INGEGNERIA CIVILE TRASPORTI II Sessione – 2008

Prova scritta – 27 Novembre 2008

TEMA n. 4

Nell'area individuata dalla tavola dello STATO ATTUALE si prevede la realizzazione di una strada extraurbana secondaria (TIPOLOGIA C1 – D.M. 05.11.2001) che colleghi le due rotatorie esistenti..

Relativamente a detta infrastruttura viaria di collegamento, il candidato proceda alla redazione del progetto stradale tendendo conto dell'orografia dei luoghi, della presenza della linea elettrica aerea e degli accessi alle proprietà che dovranno comunque essere preservati o reintegrati con soluzioni alternative a quelle attuali. La quota di progetto della rotatoria 1 è posta a 20 metri s.t.m. e quella della rotatoria a 22 metri s.t.m..

- Gli elaborati di progetto da sviluppare sono:
 - RELAZIONE TECNICA (Descrizione dell'intervento, Caratteristiche plano-altimetriche delle strada, Indicazioni di massima sulle caratteristiche dei manufatti necessari)
 - PLANIMETRIA DI PROGETTO (scala 1:1000) e RAPPRESENTAZIONI GRAFICHE DI DETTAGLIO (scala 1:200) relative alle opere d'arte
 - PROFILO LONGITUDINALE (scala 1:1000 1:100) con diagramma delle velocità e verifiche specifiche da riportare in apposito paragrafo nella Relazione Tecnica
 - SEZIONI TIPO (scala 1:100) e particolari costruttivi in scala opportuna

NOTA: il candidato progetti la pavimentazione stradale studiando gli spessori dei vari strati ritenuti necessari per garantire alla strada una durata della vita utile di almeno 30 anni.

flowfen

Du's

Show

Rampi Ager

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE MAGGIO 2007 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 29.05.2007

TEMA N. 1

Una strada di tipo B (D.M. 5.11.2001) "Norme funzionali geometriche per la costruzione delle strade" (ex tipo III Norme CNR bollettino Ufficiale n. 78), in rilevato a m. 2.50 dal piano campagna, interseca una strada di tipo C1 (ex tipo IV), in rilevato a m. 1.50 dal piano campagna. (Fig. 1)

Il Candidato progetti uno svincolo a rombo producendo:

- 1 la planimetria dell'intersezione con zona di occupazione (scala 1:1000);
- 2 il profilo longitudinale della rampa (scala 1:1000/1:100);
- 3 lo studio particolareggiato del nodo A (fig. 1);
- 4 lo studio di massima del manufatto di scavalco.

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE MAGGIO 2007

SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 29.05.2007

TEMA N. 2

Fornire una stima del traffico medio a distanza di 20 anni con riferimento alla rete stradale allegata, tramite adozione del modello gravitazionale equilibrato sulle origini e assegnazioni di minimo costo.

Per lo studio si prendano in esame i quattro parametri di tab. 1, riferiti all'anno 2007, tenendo conto che l'incremento della popolazione per il periodo 2007/2027 è dello 0.5%.

In tab. 2 sono riportati i pesi dei parametri e in tab. 3 le proiezioni degli incrementi dei valori dei parametri relative allo stesso periodo 2007/2027.

In tab. 4 sono riportati i dati del TGM su alcuni tronchi della rete.

Il candidato dimensioni la sezione del tratto 1-2 affinché, con proiezione al 2027, venga garantito il livello di servizio C nell'ora di punta.

tab. 1

Polo	popolazione residente A	addetti industria B	addetti Agricoltura C	altre attività D
1	10.000	15 %	5%	30 %
2	25.000	15 %	5%	30 %
3	30.000	15 %	5 %	30 %
4	10.000	15 %	5 %	30 %
5	5.000	15 %	5 %	30 %

fig.1

20
25
30
25
30
35

tab. 2

Parametri	Peso attuale
Α	4
В	3
С	1
D	2

tab. 3

Parametri	2007/2027	
	%	
Α	5	
В	3	
С	2	
D	3	
	1	

tab. 4

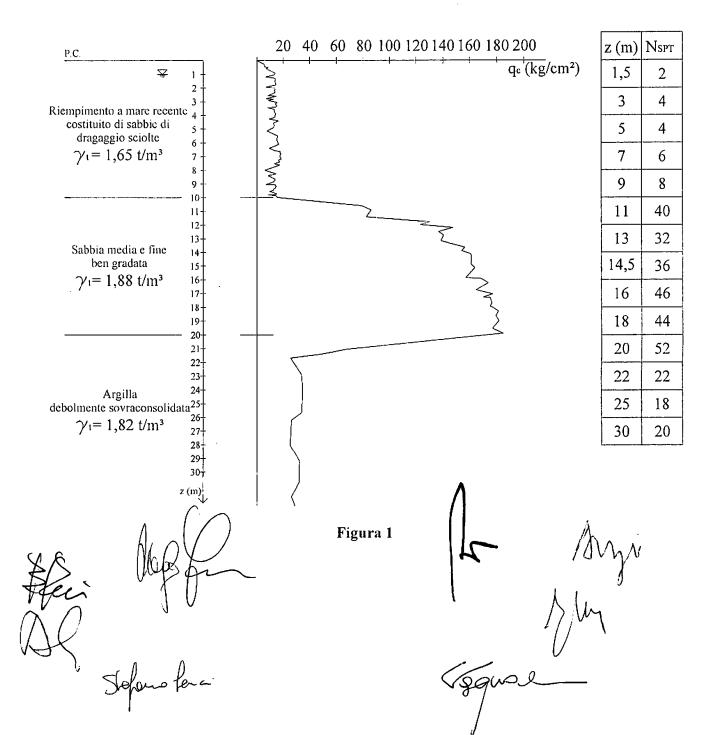
arco	TGM 2007	
1-5	1700	
2-4	3000	
3-4	4800	

Her Dem

Stone lene

(b

Alyr Juni



SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 29.05.2007

Vo

TEMA N. 3

E' data la stratigrafia essenziale del sito ubicato in zona sismica di II categoria, desunta dai sondaggi, prove penetrometriche statiche e prove penetrometriche dinamiche standard (SPT), rappresentata in figura 1 (la stratigrafia di riferimento rappresenta la peggiore delle 10 verticali indagate).

- 1. Si caratterizzino gli strati non coesivi in base ai risultati delle prove in situ.
- 2. Si dimensionino le fondazioni di una struttura avente le caratteristiche geometriche indicate in figura 2:

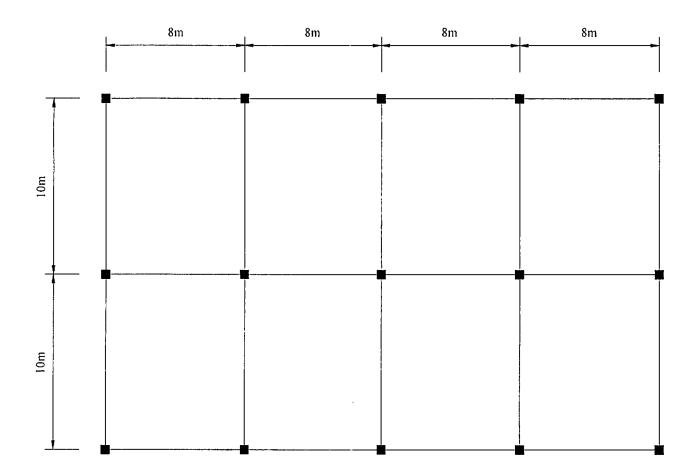


Figura 2

- altezza 5 m;
- moduli accostati 10 x 8 m;
 con un carico di progetto sulla pavimentazione di 1 t/m².

HE.

Approx lenci

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE II SESSIONE 2007

SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2007

TEMA N. 1

In prossimità di un rilevato stradale già esistente, avente larghezza in sommità pari a 12 m, altezza 3 m e pendenza delle scarpate 2/3, deve essere realizzato un nuovo rilevato per una strada di categoria A, con larghezza utile di carreggiata pari a 25 m e piano viario a 5 m al di sopra del piano di campagna. I due assi stradali si sviluppano in rettilineo lungo tracciati paralleli, ad una distanza pari a 45 m. Con riferimento alla stratigrafia ed ai parametri geotecnici indicati, si richiede:

- -- definizione della geometria del nuovo rilevato;
- -- verifica di stabilità del nuovo rilevato:
- -- valutazione e quantificazione degli effetti della costruzione del nuovo rilevato sull'infrastruttura esistente, con particolare riferimento alla sua funzionalità nel tempo;
- -- indicazione sintetica degli aspetti costruttivi del nuovo rilevato (ad es. qualità e caratteristiche del materiale da adottare, modalità di posa in opera, eventuali lavori preliminari necessari, ecc.).

stratigrafia:

da m 0 a m 10 dal p.c.: sabbia limosa mediamente addensata

da m 10 a m 40 dal p.c.: argilla limosa oltre m 40 dal p.c.: limo argilloso

superficie piezometrica collocata a 3 m dal piano campagna

parametri geotecnici:

	mediamente	

 $y = 17,50 \text{ kN/m}^3$

E' = 15000 kPa

c' = 0

 $\gamma_{\rm S} = 2,75 \, \gamma_{\rm W}$

v' = 0.2

 $\phi' = 38^{\circ}$

argilla limosa

(dati riferiti ad un campione indisturbato prelevato a 15 m dal p.c., con asse del carotaggio coincidente con l'asse stradale dell'opera in progetto)

 $\gamma = 17 \text{ kN/m}^3$

 $C_{\rm C} = 0.4$

 $c_V = 3.10^{-4} \text{ cm}^2/\text{s}$

 $\gamma_S = 2.73 \gamma_W$

 $C_{S} = 0.06$

 $\sigma' = 27^{\circ}$

w = 48%

OCR ≈ 2

 $w_i = 55\%$

per questo terreno si possono ritenere valide le seguenti relazioni: $c_U/\sigma'_{V0} = 0.35$; $E_U = 250 \cdot c_U$

limo argilloso

 $\gamma = 21 \text{ kN/m}^3$

E' = 50000 kPa

c' = 40 kPa

 $c_{11} = 300 \text{ kPa}$

 $\gamma_{\rm S} = 2.78 \, \gamma_{\rm W}$

v' = 0.2

 $\phi' = 24^{\circ}$

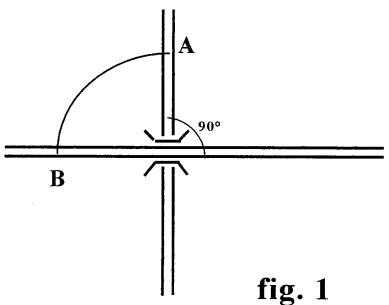
w = 21%

OCR = 15 ≅ cost

 $w_1 = 55\%$

Il peso∕dell'unità di volume del rilevato esistente è 18.50 kN/m³

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE **SESSIONE NOVEMBRE 2007** SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2007


TEMA N. 2

Una strada di tipo C2 interseca una strada urbana di quartiere di tipo E (D.M. 5.11.2001 - Norme funzionali geometriche per la costruzione delle strade) alla quota del piano campagna, in zona pianeggiante, formando un angolo di 90° (Fig.1).

Progettare l'intersezione altimetricamente sfalsata prevedendo una sola rampa bidirezionale (quadrifoglio parziale monoquadrante).

Il Candidato dovrà produrre:

- la planimetria dell'intersezione con l'individuazione della zona di occupazione (scala 1:1000);
- il profilo longitudinale della strada che scavalca l'altra (scala 1:1000/1:100);
- lo studio particolareggiato di uno dei due nodi A o B (zona a raso canalizzata);
- lo studio di massima del manufatto di scavalco.

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE NOVEMBRE 2007 SEZIONE: INGEGNERIA CIVILE TRASPORTI PROVA SCRITTA DEL 27.11.2007

TEMA N. 3

- I) Si esegua il progetto definitivo del tracciato che collega i punti A e B riportati in planimetria sulla base dei seguenti dati:
- Caratteristiche geometriche di una strada di tipo C2. (DM 5/11/2001).
- (DM 5/11/2001). - Quote di progetto rispetto al terreno QA = -0,50 mQB = + 0.50 mII) In corrispondenza del punto B si dimensioni geometricamente una intersezione a raso considerando di dover collegare il tracciato ad una strada di tipo C1. Si richiedono in particolare i seguenti elaborati:
- 1) Schemi grafici planimetrici ed altimetrici.
- 2) Particolari costruttivi del corpo stradale e delle opere d'arte minori.
- 3) Relazione tecnica illustrativa.
- 4) Elenco elaborati integrativi riguardanti studi specialistici.

5) Requisiti di accettazione dei materiali stradali impiegati.

230

Sofon lena May In

Fren

ay Any