
ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE - 2008

Vecchio Ordinamento, Ramo Meccanica, Prova scritta

TEMA N.

Lo schema di figura 1 rappresenta (nella vista in pianta) il concetto funzionale di una motorizzazione di una paratoia a settore, realizzata mediante un motoriduttore centrale a vite senza fine, due alberi di trasmissione e due riduttori ad assi paralleli laterali. All'uscita dei riduttori laterali si trovano due alberi, uno per lato, sui quali sono calettati due pignoni per le catene di sollevamento. Gli alberi finali possono essere supportati dai riduttori e/o da supporti commerciali, dotati comunque di cuscinetti a rotolamento.

Ogni pignone solleva una apposita catena (ad 1 solo tiro attivo e con l'altro ramo lasco, vedi figura 2, in vista laterale) a cui è sospeso il carico. La motorizzazione deve rispettare le seguenti caratteristiche:

- velocità di sollevamento costante
- 0.25 m/minuto:
- carico utile nominale cadauna catena

100 kN:

- 1 solo motore elettrico 4 o 6 poli trifase
- irreversibilità intrinseca del moto senza frenatura, in caso di mancanza di corrente
- durata pari ad almeno 2000 ore di funzionamento.
- distanza fra le linee di mezzeria dei pignoni

18000 mm

Si richiede di fornire una progettazione degli organi di trasmissione:

- alberi veloci (dopo prima riduzione) e alberi lenti (finali);
- giunti, flangie, bullonature, cuscinetti e/o supporti, catene;
- riduttore ad assi paralleli;
- pignoni per catene,

facendo eccezione per il motoriduttore centrale, di cui sono richieste solo le caratteristiche funzionali di base per la scelta (potenza, rendimento presunto, numero di giri in entrata/uscita).

L'elaborato dovrà presentare i calcoli di dimensionamento strutturale, spiegare i criteri di scelta di tutti gli organi standard e illustrare il complessivo della trasmissione con un disegno (anche a mano libera), corredato dei particolari costruttivi di maggiore criticità.

Si richiede anche una tabella riassuntiva dei dati tecnici principali

della trasmissione.

Malat

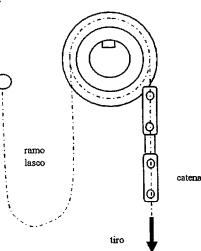


Figura 2

FUR

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE - 2008

Vecchio Ordinamento, Ramo Meccanica, Prova scritta

TEMA N. 2

Dimensionare un magazzino frigorifero per la refrigerazione e la conservazione di derrate alimentari (ortofrutticoli) di potenzialità pari a P= 1100 tonnellate. Si consideri l'ammoniaca come fluido frigorifero.

La densità massima di stivaggio è di d = 280 kg/mc,

La temperatura di conservazione è pari a $T_c = +4^{\circ}C$,

La merce non può essere ammassata e/o compressa in un unico spazio da raffreddare, per motivi di spazio dimensioni e spreco di energia; si divide l'area del magazzino in un certo numero di celle frigorifere singole di dimensioni: 10 (lunghezza) x 7 (larghezza) x 5 (altezza)

Il coefficiente di introduzione giornaliero per ogni singola cella sia pari a X = 11% della capacità totale della stessa.

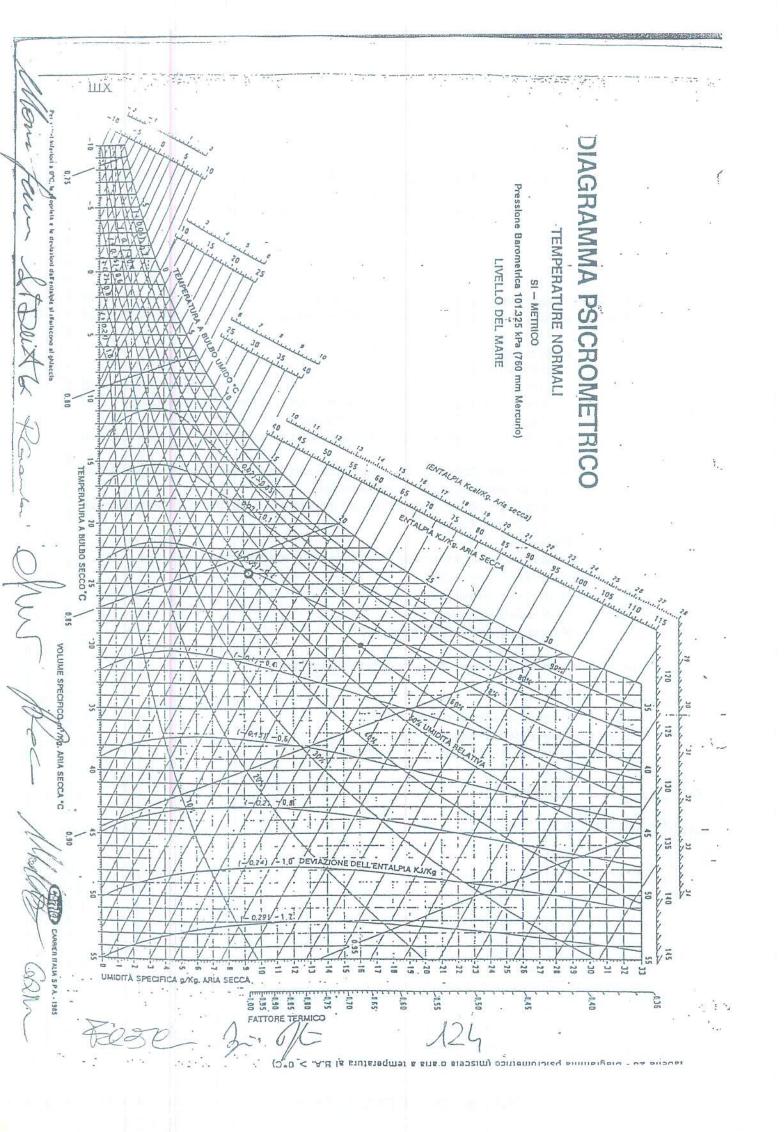
La tamponatura esterna del magazzino nonché le pareti divisorie tra le singole celle ed il reparto di lavorazione sono realizzate con pannelli isolanti prefabbricati.

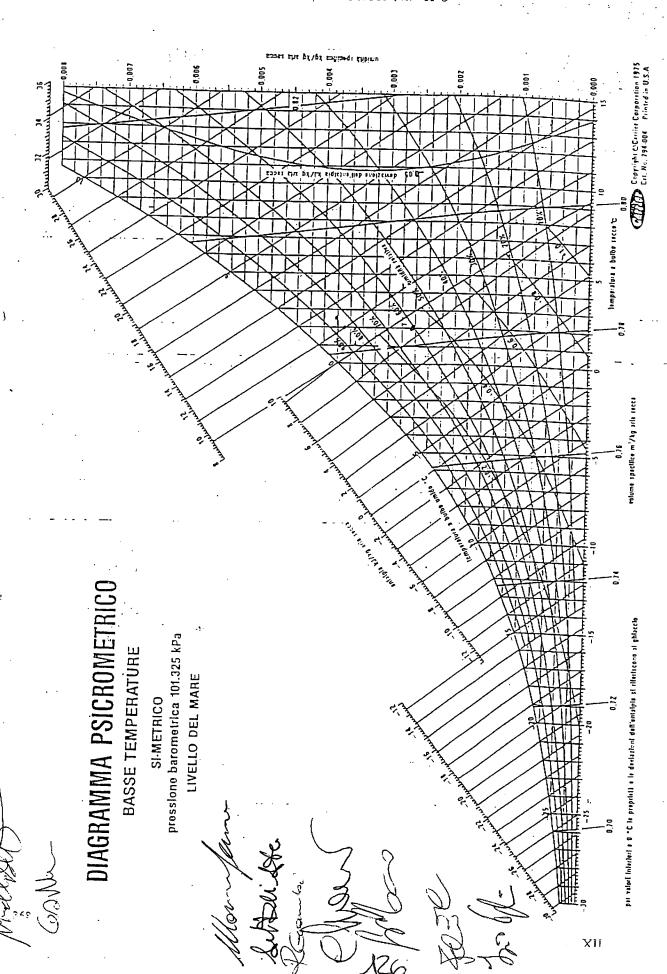
Dopo aver definito la configurazione planimetrica del magazzino, si effettui il dimensionamento delle unità refrigeranti di ciascuna cella.

Si richiede in particolare:

- Il dimensionamento delle unità refrigeranti di ciascuna cella: evaporatore + ventilatore.
- Il dimensionamento del compressore.
- Il dimensionamento del condensatore.
- Schema complessivo dell'impianto.
- Definizione del ciclo frigorifero sul diagramma p-h.

Eventuali dati mancanti siano opportunamente fissati dal candidato.


Allegati:


- Diagramma psicometrico (Temperature normali);
- Diagramma psicometrico (Temperature basse);
- Diagramma p-h del fluido frigorifero R717 (Ammoniaca NH₃);

123

Canu

1. 6/6

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE - 2008

Vecchio Ordinamento, Ramo Meccanica, Prova scritta

Tema n.

Dimensionare un impianto a contropressione per industria con utenze di vapore tecnologico e di energia elettrica per i servizi interni. I rispettivi fabbisogni giornalieri sono di seguito riassunti:

Ore	Gv [ton/h di vapore]		
0-10	25		
10-20	35		
20-24	25		

Ore	P[kW di potenza richiesta]		
0-6	3000		
6-12	5000		
12-15	4000		
15-20	5000		
20-24	3000		

Il vapore occorrente per uso tecnologico deve avere le seguenti caratteristiche:

$$p_u=3,5bar t_{sat}=138,2^{\circ}C$$

Dati del problema:

- Perdita di carico totale dal generatore all'utilizzatore: Δptot=0,5bar/100ml;
- Perdita di temperatura lungo la linea: Δt_{linea}=10°C;
- Distanza utilizzatore generatore: L=150m;
- Il rendimento meccanico della turbina : η_{mt}=0,97;
- Il rendimento per perdite di calore (per trafilamenti): η_p=0,99;
- Il rendimento dell'alternatore : η_{alt}=0,96;
- Il rendimento isoentropico di espansione : η_{is}=0,80;
- Il rendimento del generatore di vapore: $\eta_g = 0.90$;
- Il potere calorifico inferiore del gas metano: Ki=8500Kcal/Nmc;
- Il costo del gas metano: b=0,33€/NMc;
- Il costo dell'energia elettrica: c=0,13€/kWh;
- Il coefficiente di utilizzazione dell'impianto : u=80%;
- La maggiore spesa per l'impianto in contropressione (rispetto ad un impianto che produce solo vapore): Δc=258,23€/kW_{installato};
- Costo percentuale di manutenzione : m=4%;
- Costo di manutenzione: $m \cdot \Delta c = 10,33 \epsilon / kW_{installato}$;
- Costo della manodopera aggiuntiva M = 38734,27€/anno;

Si richiede:

- Schema di massima dell'impianto
- Rappresentazione delle trasformazioni sui diagrammi

F5K

Montem Devid

- Ottimizzazione economica del sistema: valutare fino a che punto conviene produrre energia anziché acquistarla (in modo che sia minimo il costo globale del kWh)
- Determinare la quantità di vapore che deve attraversare il by-pass
- Il dimensionamento delle linee del vapore
- Il dimensionamento dello scaricatore di condensa a protezione della linea del vapore

Eventuali dati mancanti siano opportunamente fissati dal candidato.

ESAME DI STATO PER L'ABILITAZIONE – Meccanica CONCOLOR PROVA SCRITTA V.O.

Si consideri il primo passo di una trafilatura di un filo di Rame, di diametro iniziale pari a 5 mm, in una filiera con angolo $2\alpha = 20^{\circ}$ e un coefficiente di attrito pari a 0,2; le proprietà meccaniche del rame da trafilare vengono determinate mediante la prova di trazione, che ha dato i risultati elencati in Tabella 1.

- a) Trovare la legge di incrudimento del Rame.
- b) Calcolare la portata d'acqua necessaria a raffreddare la filiera, per produrre un filo di diametro finale di 3,5 mm con velocità in uscita di 2 [m/s]. Supporre per l'acqua un incremento di 10°C (c_{acqua} = 4,2 [KJ/Kg.°C]). La quantità di calore ceduta alla filiera sia pari a 2/3 del lavoro di attrito.
- c) Calcolare la potenza elettrica necessaria al motore di alimentazione; supponendo che il rendimento del banco sia 0,85 e quello del motore sia 0,90. il lavoro specifico di distorsione sia 40 MPa.
- d) Si scelga opportunamente il materiale da utilizzare per la trafila, ottimizzandone anche il trattamento termico per la specifica applicazione
- e) Nel caso che si debba ottenere una riduzione di sezione molto elevata, sarà necessario trafilare il filo attraverso diversi passaggi di trafilatura; in questo caso spiegare la necessità di trattamenti termici intermedi.

Tabella 1. Dati in output della macchina di prova di trazione eseguita su un campione cilindrico con D_0 = 10 mm e L_0 = 50 mm.

F (KN)	allungamento (mm)
0	0
8.4	0.2
11.4	0.5
13	11
14.1	3.5
15.1	6
15.8	8.5
16.5	11
17.3	13.5
17.7	16
18.4	18.5
18.8	21
19.2	23.5
19.8	26
20.3	28.5
20.4	31
20.3	33.5
18.4	35

Manufan Danski

ESAME DI STATO ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SESSIONE MAGGIO 2007

Sezione Ingegneria Meccanica Prova scritta del 29/05/2007 TEMA N° 1

Progettare la rete di distribuzione idrico-sanitaria (solo acqua fredda) di un edificio residenziale di 10 piani le cui dimensioni principali sono riportate in allegato (per le valutazioni di progetto assumere i dati dimensionali non quotati sulla base dei disegni allegati).

L'edificio contiene 10 appartamenti per civile abitazione all'interno dei quali le utenze che necessitano l'erogazione di acqua fredda sono quelle di due bagni ed una cucina:

1° bagno: lavabo, WC a cassetta, Bidet, vasca da bagno

2º bagno: lavabo, WC a cassetta, Bidet, doccia, lavatrice

cucina: lavello, lavastoviglie.

L'acqua fredda è disponibile, ad una pressione di 0.35 MPa, dalla rete dell'acquedotto che corre parallela all'edificio ad una distanza di 10 m dalla facciata.

Dopo avere indicato le scelte progettuali seguite ed il procedimento di calcolo della rete il candidato dovrà produrre un elaborato consistente in uno schematico disegno assonometrico in scala dell'edificio sul quale sia rappresentato lo sviluppo della rete idrica a partire dall'allaccio all'acquedotto.

Su tale disegno dovranno essere riportati chiaramente:

- tutti i componenti previsti nell'impianto nella loro localizzazione
- i percorsi seguiti dalle tubazioni
- il diametro ed i materiali utilizzati per le tubazione (perlomeno per l'ultimo piano, per il piano terra e per i tratti di rete che dall'acquedotto raggiungono i suddetti piani)
- Le portate nominali delle utenze possono essere ricavate dalla allegata tabella 1.
- Per la determinazione della portata di progetto tenendo conto dei fattori di contemporaneità di utilizzo statistico delle singole utenze si faccia riferimento alla allegata tabella 3.
- L'eventuale impiantistica a servizio della rete può essere disposta nello scantinato

ALLEGATI:

Pianta appartamenti

Prospetto edificio

Tabella valori medi delle perdite di carico indotte da alcuni componenti di un impianto idrosanitario Tabella portata di progetto per reti idriche di edifici residenziali in relazione alle portate totali

Tabella portata nominali per rubinetti d'uso sanitario

- whillhere

Sefons lenc

He

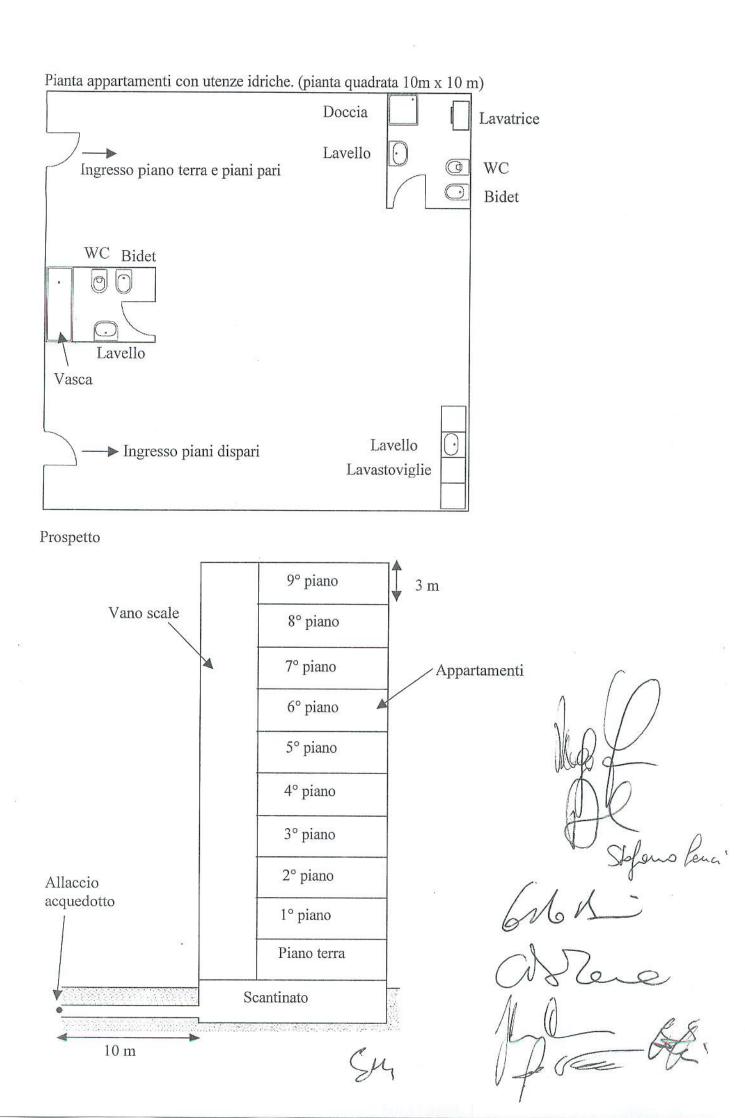


Tabella 1 Portata nominali per rubinetti d'uso sanitario

Apparecchi	acqua fredda [l/s]	acqua calda [l/s]	pressione [m c.a.]
Lavabo	0,10	0,10	5
Bidet	0.10	0,10	5
Vaso a cassetta	0,10		5
Vaso con passo rapido	1,50		15
Vaso con flussometro	1,50		15
Vasca da bagno	0,20	0,20	5
Doccia	0.15	0,15	5
Lavello da cucina	0,20	0,20	5
Lavatrice	0,10		5
Lavastoviglie	0,20		5
Orinatoio comandato	0,10		5
Orinatoio continuo	0,05		5
Vuotatoio con cassetta	0,15		5

Tabella 2 Valori medi delle perdite di carico indotte da alcuni componenti di un impianto idrosanitario

Componenti	Happ [m c.a.]
Contatore d'acqua generale	6 ÷ 8
Contatore d'acqua d'alloggio	$3 \div 4$
Disconnettore	5 ÷ 6
Miscelatore termostatico	4
Miscelatore elettronico	2
Scambiatore di calore a piastre	4
Addolcitore	8
Dosatore di polifosfati	4

· ferci

Sun

A Dece

He.

Tabella 3 - Portata di progetto* per reti idriche di edifici residenziali in relazione alle portate totali (derivate dalle norme prEN 806).

*sono le portate massime previste nei periodi di maggior utilizzo dell'impianto e sono le portate in base a cui vanno dimensionate le reti di distribuzione.

Gta	Gtb	G_{pr}	Gta	Gtb	$G_{\mathrm{P}^{\mathrm{c}}}$
[l/s]	[l/s]	[l/s]	[l/s]	[l/s]	[1/s]
0,06		0,05	 13,36	9,88	2.05
0,10		0,10	14.05	10,76	2,10
0,15		0,15	14,76	11,71	2,15
0,21		0,20	15,48	12,72	2,20
0.29	***	0,25	16.23	13,80	2,25
0,38		0,30	16,99	14,95	2,30
0,48		0,35	17,78	16.17	2,35
0,60		0,40	18,58	17,48	2,40
0,72		0,45	19,40	18,86	2,45
0,87		0,50	20,24	20,33	2.50
1,03	0,55	0,55	21.	,08	2.55
1,20	0,60	0,60	23		2,60
1,39	0,65	0,65	26		2,65
1,59	0,70	0,70	29		2,70
1,81	0,75	0,75	32		2,75
2,04	08,0	0,80	36		2,80
2.29	0,85	0,85		40,70	
2,55	0,90	0,90		45,42	
2.83	0,95	0,95	50.		2,95
3,13	1,00	1,00	56.		3,00
3,45	1,15	1,05	63		3.05
3,78	1,31	1,10	70		3,10
4,12	1,50	1,15	78.		3.15
4,49	1,70	1,20	87.		3,20
4,87	1,92	1,25	97.		3,25
5,26	2,17	1.,30	109		3,30
5,68	2,44	1,35	121		3,35
6,11	2,74	1,40	135		3,40
6,56	3,06	1,45	151		3,45
7,03	3,41	1,50	169		3,50
7,51	3,80	1,55	•	188,89	
8,02	4,22	1,60	210,78		3,60
8.54	4.67	1,65	235,20		3,65
9,08	5.17	1,70	262		3,70
9,63	5,70	1,75	292		3,75
10,21	6,27	1,80	326		3,80
10,80	6,89	1,85	364		3,85
11,41	7,56	1,90	406		3,90
12,04	8,28	1,95	454		3,95
12,69	9,05	2,00	506		4,00

Gta = Portata totale con singoli prelievi minori di 0,5 1/s

Gtb = Portata totale con singoli prelievi maggiori o uguali a 0,5 1/s

Gpr = Portata di progetto, l/s

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI

INGEGNERE - I Sessione 2007 Vecchio Ordinamento Ramo Meccanica Prova scritta

TEMA N. 2

Si consideri di dover effettuare la laminazione da uno spessore iniziale di 20 mm ad uno finale di 15 mm di una lastra di acciaio, di larghezza pari a 350 mm, le cui proprietà al flusso plastico siano ricavate dai risultati di una prova di trazione effettuata su un provino di diametro (d_0) pari a 10 mm e con lunghezza del tratto utile (L_0) pari a 50 mm e riportati in tabella 1. Siano le caratteristiche del laminatoio:

- Raggio dei rulli= 260 mm
- Velocità=110 giri/min
- Raggio dei colli=120 mm
- Coefficiente di attrito rullo-materiale= 0,16
- Coefficiente di attrito sui colli=0,04

Il candidato calcoli:

- la potenza necessaria per eseguire l'operazione tenendo conto di un rendimento totale pari a 0.75
- l'aumento di temperatura dovuto alla deformazione e all'attrito
- il numero di passate da effettuare, avendo a disposizione un laminatoio da 2,5 MN

Si consideri che il laminato di cui sopra subisca ulteriori deformazioni fino allo spessore di 2 mm; il candidato calcoli la deformazione equivalente ottenuta deformando plasticamente uno spezzone di tale lamiera supponendo che sulla sua superficie siano stati preventivamente stampati dei cerchi di diametro pari a 5 mm e che per effetto di tale deformazione siano divenuti ellissi con assi maggiori e minori rispettivamente di 6,2 e 5,4 mm

Tabella 1 – Risultati forniti dalla macchina di prova.

Allungamento (LWGHELLA COCAZATE)

		•			
F (kN)	(mm)				
18,22	50,26			$ \wedge $	
20,61	51,45				
23,89	53			Λ_{i} Λ_{i}	
26,19	54,58				
28,36	56,91			1Vh de V	
30,36	61,03			May a	_
30,97	67,86				
30,18	70,6	<i>(</i> .	4		
21,01	71,72				ı
	A Sofono	Levei A	Rece	Com 2	evi
U	The	llaus;	fe ve		/

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE - 2007

Vecchio Ordinamento, Ramo Meccanica, Prova scritta

TEMA N. **1**

Dimensionare un impianto di concentrazione a multipli effetti per zuccherificio.

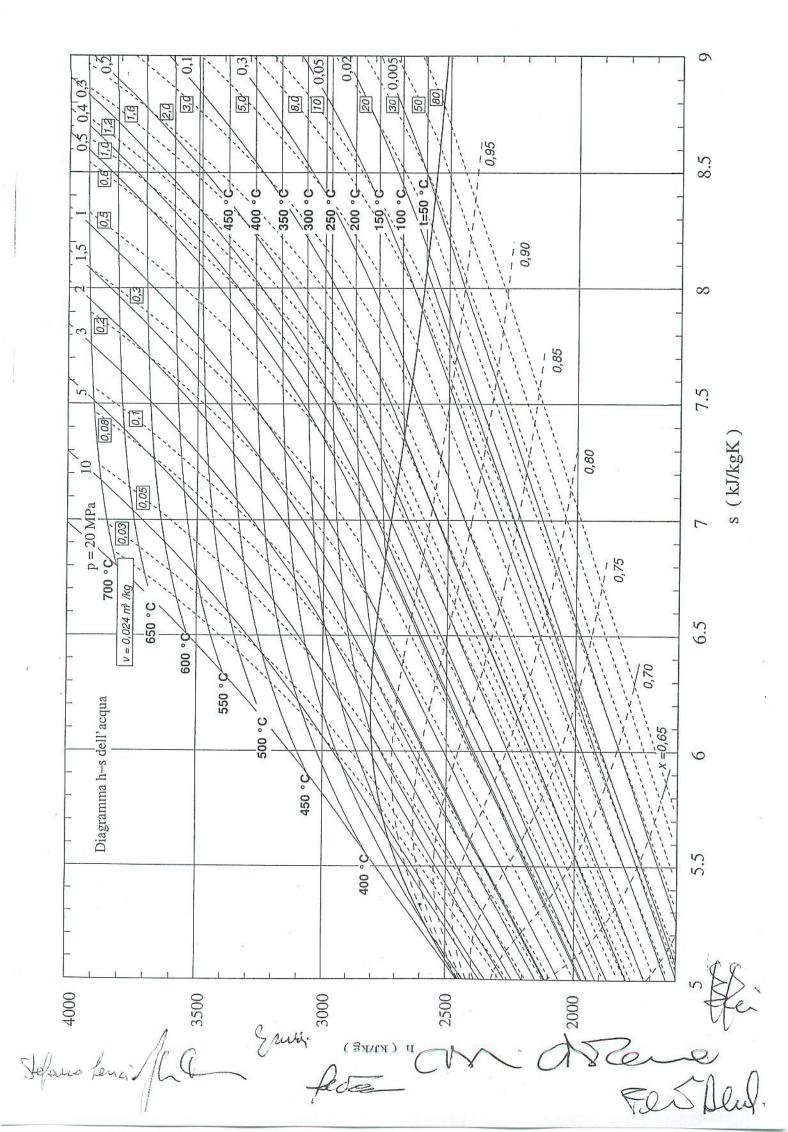
Dati di progetto:

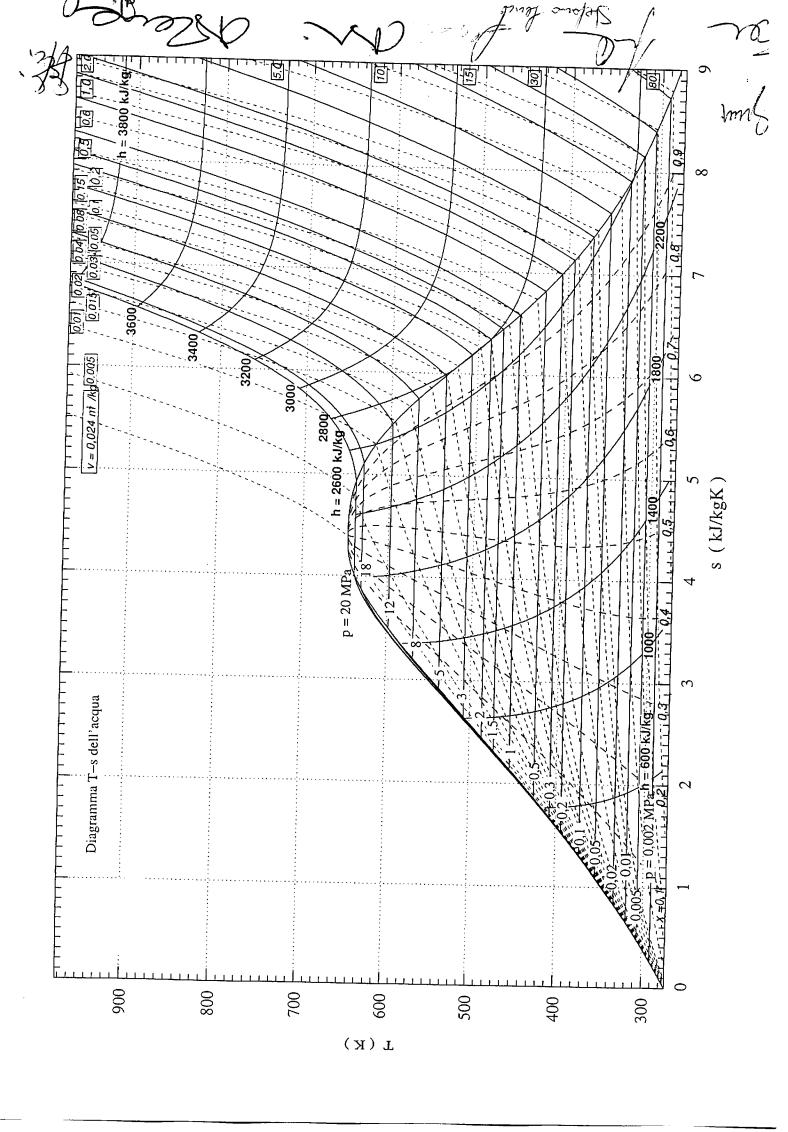
- ⇒ l'impianto è dotato di n° tre stadi di evaporazione alimentati in cascata con vapore saturo secco;
- ⇒ la potenzialità giornaliera è di 23000 q di barbabietole equivalenti a circa 28750 q/giorno di sugo leggero da trattare per l'aggiunta di acqua ed additivi;
- ⇒ la concentrazione iniziale della soluzione è pari a C_i = 13 % di sostanza secca;
- \Rightarrow la concentrazione finale richiesta è $C_f = 57 \%$;
- \Rightarrow la temperatura massima cui il prodotto può essere sottoposto è $T_{max} = 110$ °C.

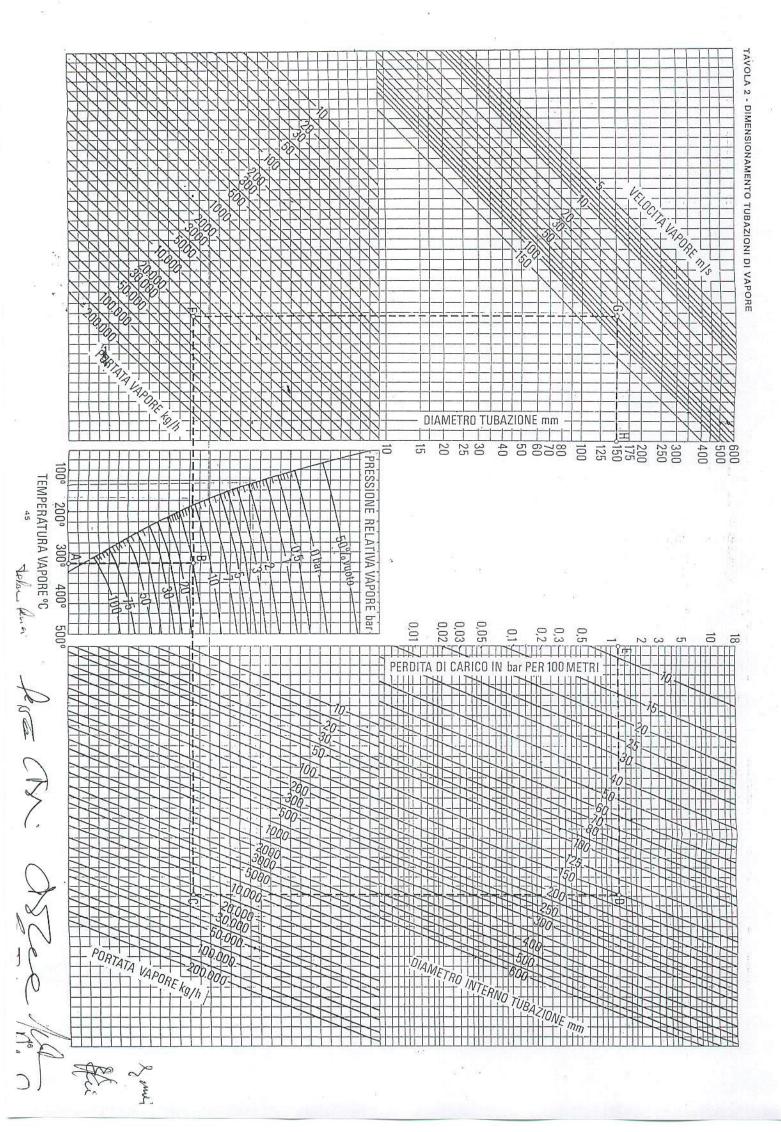
Si è inoltre deciso di produrre autonomamente l'intero fabbisogno di energia elettrica dello stabilimento corrispondente a $P_E = 3$ kW per ogni quintale di barbabietole lavorate in un'ora. Si richiede:

- a) il dimensionamento di massima degli evaporatori;
- b) schema dell'impianto complessivo;
- c) la rappresentazione delle trasformazioni sul diagramma T-S;
- d) la scelta del generatore di vapore con il calcolo del consumo previsto di combustibile (metano);
- e) il dimensionamento della linea principale di distribuzione del vapore considerando che la centrale termica dista dagli utilizzatori circa $L_v = 350$ m;
- f) il dimensionamento della linea di distribuzione ed il relativo sistema di pompaggio dell'acqua per la condensazione del vapore all'ultimo stadio, tenendo conto che la distanza dalla falda acquifera è $L_a = 300$ m ed il dislivello da vincere è di $h_a = 50$ m.

Per la soluzione si prendano i seguenti valori:


- temperatura di ingresso acqua di raffreddamento al condensatore barometrico: $T_a = 20$ °C; %
- 2) pressione al condensatore barometrico: $p_c = 0.2$ bar;
- 3) coefficienti di scambio: $K_1 = 2900 \text{ W/m}^2 \text{ °C}$, $K_2 = 2300 \text{ W/m}^2 \text{ °C}$ e $K_3 = 1500 \text{ W/m}^2 \text{ °C}$.


Eventuali dați mancanti siano fissați opportunamente dal candidato.


Her

All forces

Selem Renaided

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE

2^ sessione 2007 Vecchio Ordinamento Settore: Industriale Prima Prova Tema n°: 2

E' richiesto al candidato il progetto della condotta e del sistema di misura di portata tipo Rotametro per un impianto con le seguenti caratteristiche:

Range portata:

 $1-5 \text{ m}^3/\text{h}$

Fluido:

acqua

Uscita informazione:

Analogica 0-10 V

0-40 °C.

Temperatura di esercizio:

Il candidato definisca:

- 1. la struttura della condotta e del sensore con dettagli costruttivi;
- 2. le prestazioni previste del sensore in termini statici e dinamici;
- 3. le caratteristiche del sensore secondario;

A.O.

Sepre leva

Mere

tasa

Spurd

Alul